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Abstract 

This paper describes a method for improving the comprehensibility, accuracy, and gen- 

erality of reactive plans. A reactive plan is a set of reactive rules. Our method involves two 

phases: (1) formulate explanations of execution traces, and (2) generate new reactive rules 

from the explanations. The explanation phase involves translating the execution trace of a 

reactive planner into an abstract language, and then using Explanation Based Learning to 

identify general strategies within the abstract trace. The rule generation phase consists of 

taking a subset of the explanations and using these explanations to generate a set of new reac- 

tive rules to add to the original set for the purpose of performance improvement. 

1. Introduction 

Reactive planning has proven to be a highly effective approach to planning (e.g., [10]). 

We have developed an enhancer for reactive plans that satisfies two goals. The first goal is to 

facilitate human understanding of plans generated by a particular class of reactive planners. 

This class consists of planners that gain effectiveness at the expense of human comprehensi- 

bility (e.g., [1] and [4]). The second goal is to improve the reliability and generality of reac- 

tive plans. 

Figure 1 diagrams our approach which is divided into two phases, each associated with 

one of the goals. An explanation phase appears to the left of the dotted line in Figure 1 and a 

rule generation phase appears to the right. The explanation phase begins with the application 

of a reactive planning system to a problem. The system generates an execution trace, which 

is translateH into an abstract language trace.  Next, a variant of Explanation Based Learning 
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(EBL) is applied to explain the abstract trace. EBL is a knowledge-intensive technique for 

forming a general explanation from a specific example [9]. EBL assumes that there exists a 

previously constructed domain theory and uses this theory to deductively derive explanations. 

The explanation phase of our method, which captures generalizations such as symmetries, 

culminates in English text describing the high level strategies of the reactive planner. We 

assume that each plan is composed of a set of reactive rules. During the rule generation 

phase, a subset of the explanations from the previous phase is used to generate a set of new 

reactive rules to add to the original plan. The new rules behave as a local expert because they 

remedy localized weaknesses of the original plan. The system may now use this enhanced 

plan to tackle the problem again. Our implementation of this method is called EXplain-and- 

GENerate (EXGEN). 

Domain 

Theory 

EBL English 

Explanation 

: translation New 

Rules \.  
i-or 

Abstract 

Execution 

Trace 

M 

abstraction 

selection 

ivns   CRAii 
01 :C     TA£ 

Subset of 

New 

Rules 

V 
integration 

Execution 

Trace 

Original 

Reactive 

Plan 

NEW 

REACTIVE 

PLAN 

SV\ 

FIG. 1. Plan explanation and rule generation. 

We have applied this approach to a reactive plan and a problem described in Section 2. 

For this problem, the reactive planner's knowledge is imperfect. We know this because the 

planner, when using this knowledge (the original reactive plan), has less than a perfect suc- 

cess rate. Furthermore, the domain theory used to explain and generate rules is only complete 

for a local area of expertise. What is most interesting is that both sources of knowledge com- 

plement each other, one filling in the knowledge gaps for the other. When EXGEN is added 

to the reactive planner, the newly generated set of rules helps the planner to achieve 100% 

success. 

Previous research is related to this work. EXGEN is similar to Learning Apprentice Sys- 

tems (e.g., [3], [12]) because it uses EBL to explain the behavior of an expert and then uses 



this explanation to generate new planning rules. The difference is that Learning Apprentice 

Systems learn from a human to improve a system, whereas EXGEN learns from a system for 

the purposes of human understanding and system improvement. The type of EBL invoked by 

EXGEN is Plausible EBL, which has been developed by DeJong and Gervasio [3] for deriv- 

ing plausible (i.e., uncertain and imprecise but generally true) explanations of events that 

occur in continuous domains. These explanations are expressed in the language of Qualita- 

tive Process Theory [2]. In terms of completing the gaps in a domain theory, several 

researchers provide outstanding examples ([6], [12], and [13]). However, we do not employ 

any of these approaches because their assumptions are not met in our situation. Instead, we 

use the original reactive plan to fill the knowledge gaps in the domain theory. The translation 

from high-level explanations to reactive rules is related to two techniques: specialization [8] 

and symbol grounding [7]. 

Despite these similarities to previous research, our approach is novel. Reactive planners 

are becoming increasingly complex in terms of their behavior. In response to this growing 

complexity, we have developed a plan enhancer. Ours is the first system that can explain the 

behavior of a reactive planner in human-oriented form, then improve the reactive plan based 

on the explanation. Since most people do not fully trust automation, especially if lives are at 

stake, people will probably want to screen system-generated plans for many applications. A 

plan enhancer can increase the acceptability of reactive plans to humans. 

2. The Reactive Planner and Domain 

So far, we have tested our method with the SAMUEL system [5]. This system uses a 

genetic algorithm and other competition-based heuristics to learn high performance reactive 

plans in the absence of a strong domain theory. SAMUEL has three major components: a 

problem specific module, a performance module, and a learning module. In this research, we 

use a plan that has already been learned by the system. Therefore, our method only employs 

the problem specific and performance modules. Although reactive planning involves both 

learning and executing a plan, for simplicity, we use the terms "SAMUEL" and "reactive 

planner'' to refer to the performance module of this system. 

SAMUEL has been applied to a variety of domains, such as Evasive Maneuvers (EM), 

Tracking, and Dogfighting. We would like to see if EXGEN can improve this system's perfor- 

mance in each of these domains. Schultz and Grefenstette [11] have demonstrated that the 

addition of manually developed rules can improve SAMUEL's performance for the Evasive 

Maneuvers problem. Since manually developed rules have improved the performance on 

EM, we have started by testing our approach to automatic rule generation on this problem. 



In EM, which is simulated two-dimensionally, an agent (controlled by the reactive plan) 

tries to evade an adversary. The adversary tracks and tries to destroy the agent. We divide 

EM into episodes that begin with the adversary approaching the agent from a randomly 

chosen direction and that end when either the agent is destroyed by the adversary or the 

adversary's speed falls below a given threshold. The latter occurs because, although the 

adversary's speed is initially greater than the agent's speed, the adversary loses speed as it 

chases the agent. Six sensors provide information about the current state: the agent's last- 

turn, the time, and the adversary's range, bearing, heading, and speed. One action variable 

controls the agent, namely, the agent's turning-rate (also called turn). 

An example of an actual reactive rule learned by SAMUEL for EM is the following: 

IF     (and (last-turn [-135, 135]) (time [2, 12]) (range [0, 700]) 

(bearing [2, 6]) (heading [0, 30]) (speed [100, 950])) 

THEN   (turn 90) 

where "[X, F]" denotes sensor values from X through Y. For example, "(last-turn [-135, 

135])" matches if the last turn that the agent made was between -135 and 135 degrees. The 

action recommended by this rule is to turn 90 degrees. Although individual rules are under- 

standable, the general strategy underlying a chain of rule firings is not. The strategies are 

cryptic because SAMUEL uses complex methods, such as conflict resolution and partial 

matching, when executing a reactive plan. Furthermore, these rules do not contain informa- 

tion about subgoals, such as "increasing range of adversary", that the rules are designed to 

achieve. 

3. Explanation Phase 

Our method begins by generating explanations of execution traces. An execution trace 

is composed of a chronological sequence of snapshots of numeric sensor readings resulting 

from a sequence of actions. In EM, one trace corresponds to one episode, and the success or 

failure of the agent at evading the adversary is noted at the end of the trace. Currently, only 

success traces are explained (i.e., traces where the agent evades the adversary). Using a 

predefined quantitative-to-qualitative mapping, each execution trace is translated into an 

abstract trace. The abstract trace contains high-level qualitative terms, such as "far" or 

"behind", in place of numeric values, as well as first and second derivative information. 

After translating to abstract terms, EXGEN uses (Plausible) EBL, which requires a pre- 

viously developed domain theory. To develop a domain theory for the EM problem, we have 



run a program that calculates the average frequencies of qualitative values in 100 traces of 

previous episodes. This domain theory is used by EBL to identify plausible strategies within 

the abstract trace. The most frequently occurring values are considered to be the most plausi- 

ble elements of a strategy. A strategy consists of a set of triggering preconditions (i.e., sensor 

readings) and a triggering action (which may be an action derivative) followed by a chain of 

causal events that ultimately results in the satisfaction of a subgoal. The triggering precondi- 

tions must be present in order to fire a triggering action. A triggering action is directly con- 

trollable by the agent, whereas a subgoal is not. A strategy is equivalent to an EBL proof. An 

example of an EBL proof for EM is given below. In this proof, (Q+ X Y) means that parame- 

ter X is directly proportional to parameter Y. 

(PI) (EXPLAIN (INCREASING-ADVERSARY-DECELERATION) 

(Q+ ADVERSARY-DECELERATION ADVERSARY-TURNING-RATE) 

(Q+ ADVERSARY-TURNING-RATE AGENT-TURNING-RATE) 

(INCREASING AGENT-TURNING-RATE)) 

Preconditions: {ADVERSARY-RANGE=NOT-FAR, ADVERSARY-SPEED=HIGH} 

The subgoal of PI is "increasing adversary deceleration", and the triggering action is 

"increasing agent turning rate". 

The presence of triggering preconditions and actions from the proof are verified in the 

execution trace. If present, a verified strategy has been found. If not present, the next shor- 

test EBL proof is generated (if possible). If no more proofs can be generated for a subgoal, 

an alternative subgoal is tried. Whenever a verified strategy is found, the system performs a 

largely cosmetic translation of that strategy to an English explanation. An explanation that 

has been generated from PI is: 

(El) The triggering action of the agent, which is increasing turning rate, caused the 

adversary's turning rate to have value increasing, which caused the adversary's deceleration 

to have value increasing, which caused the subgoal, increasing adversary deceleration, to 

have been achieved between times 2 and 3. The triggering preconditions are: (1) the 

adversary's range is not far, and (2) the adversary's speed is high. 

Explanation El and others that are generated by EXGEN clarify the underlying motivations 

of a complex reactive planner. A more detailed description of the explanation phase may be 

found in [4]. 



4. Rule Generation Phase 

During the rule generation phase, the system generates new reactive rules from explana- 

tions. Each rule is formed from the triggering preconditions and action of the strategy associ- 

ated with an explanation. The rule is expected to achieve the subgoal for which it is a trigger. 

The mapping that is used to convert from abstract to concrete numeric values is the inverse of 

the mapping from concrete to abstract. Multiple rules are generated from a single explana- 

tion. One rule that is generated from explanation El is: 

(Rl) IF (and (last-turn [45, 45]) (range [0, 500]) (speed [400,1000])) 

THEN (turn 135) 

This rule will increase the turning rate of the agent because the "last-turn" is 45 degrees and 

the next "turn" is 135 degrees. 

An important part (which is partially implemented) of the rule generation phase is the 

selection of those new rules that can improve SAMUEL'S performance. The reader should be 

aware during the remaining discussions that the way SAMUEL uses a reactive plan is highly 

complex due to partial rule matching and other features. Therefore, we do not have a clear 

idea of precisely how the new rules patch the gaps in the original rule set. Instead, we iden- 

tify gaps in the original plan by analyzing planning failures that appear in the execution trace. 

We have decided to add the newly generated rules to the original rule set, rather than to 

use them alone, because our domain theory is incomplete. Instead of consulting a domain 

expert to complete the theory, we adopt a complementary empirical-analytical approach to 

the problem. The original rule set, called "rules-sam", yields partial expertise and the new 

rules yield partial expertise. 

How can this complementary blend of old and new rules be implemented? Experiments 

have indicated that an integration problem arises if this blend is performed arbitrarily. In 

other words, the new rules can force SAMUEL to enter parts of the search space for which no 

new rule applies and the rules from rules-sam do not provide adequate expertise. To illustrate 

with a specific EM scenario, suppose the actions taken at time T and (T + 1) using rules-sam 

are "turn right" and then "turn left" respectively. If the explanation process captures sym- 

metry, then the action recommended by a new rule at time T might be "turn left". If the 

domain theory is incomplete, then perhaps no new rule would apply at (T + 1). If rules-sam 

also lacks knowledge for the new situation, then SAMUEL might apply the original rule that 

fired at (T + 1), which has the action "turn left". The pair of "turn left" actions at times T 

and (T+ 1) would not perform the original direction reversal that was probably effective. 



Therefore, instead of arbitrarily blending rules, we have chosen to decompose the main 

problem (e.g., EM) into two stages. A local expert is used to solve the latter stage. This is 

similar to the development of an expert to solve chess end games. The reason for developing 

an expert for the latter stage is that once control is transferred to this local expert, it will not 

return to rules-sam. Rule integration is therefore not a problem. The local expert that we 

have developed, called "rules-expert'', consists of a subset of the new rules. 

For EM, we have identified a latter stage of this problem, and EXGEN has derived the 

corresponding local expert. There are 3 natural ways to bisect an EM episode: 1) find a 

threshold value for the adversary's speed, e.g. the subproblem occurs when speed < 250, or 2) 

find a threshold value for time, or 3) find a relationship between the adversary and agent's 

speeds. We have decided to use the third option because it is the most general, i.e. it does not 

involve specific constants. To discover this relationship, we have added a sensor agent's 

speed to SAMUEL'S planner. Execution traces with the new sensor reveal that rules-sam fails 

only when the adversary's speed is equal to the agent's speed. To avoid integration problems, 

though, we need to define a stage that extends to the end of an EM episode. Fortunately, we 

know that once the adversary's speed goes below the agent's speed, the adversary's speed 

remains below it. The subproblem called restricted EM, in which the adversary's speed is less 

than or equal to the agent's speed, satisfies the constraint that control need not be returned to 

rules-sam. Therefore, we need a local expert designed for restricted EM. 

Out of all the explanations generated by EXGEN, experiments have determined that two 

explanations suffice to generate this local expert. The first states that if the agent turns away 

from the adversary then the agent achieves the subgoal "adversary behind agent" (called 

explanation "E2"). The second states that if the agent moves straight when the adversary is 

behind then the agent achieves the subgoal "increasing adversary range" (called explanation 

"E3"). EXGEN converts the triggering preconditions and actions of E2 and E3 into new 

reactive rules. Rules-expert consists of these new rules. 

During the process of creating rules-expert for EM, we have discovered that the 

qualitative-to-quantitative mapping used in the new rules, which was manually derived, is 

inadequate for high performance. Therefore, we have run experiments to compare several 

candidate mappings. Figure 2 highlights the importance of selecting a good mapping. This 

figure contrasts the performance of rules-expert with 2 different mappings. Each curve 

represents the average performance over 1000 episodes of SAMUEL using this rule set. Each 

point on the curves gives performance for a different initial adversary speed. Initial adversary 

speeds are all less than or equal to the initial agent speed, which is 333. (Recall that during 

an episode the adversary loses speed but never regains speed.) The greatest performance 

disparity occurs when the initial adversary speed is 333. In that case, the rules with Mapping 



M2 achieve 100% success whereas those with Mapping Ml only achieve 61.2% success. 
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FIG. 2. Comparison of mappings on restricted EM. 

The mapping that we have chosen (M2) for the final implementation of rules-expert is 

empirically derived by a program that averages execution trace values over the same 100 

episodes of SAMUEL that were used for generating the EBL domain theory. EXGEN's 

quantitative-to-qualitative mapping, which was formerly derived manually, is now the inverse 

of our new mapping. The final rules-expert, with the new mapping, enables the planner to 

succeed 100% of the time over 1000 episodes of restricted EM. Furthermore, the rules in 

rules-expert are mutually exclusive as well as exhaustive with respect to the ranges of sensor 

values that they cover. 

To adapt the rules in rules-expert to be part of a plan for the original EM problem, 

EXGEN adds a test for "adversary speed < agent speed" to the conditions of the new reac- 

tive rules.t Also, we have modified SAMUEL'S conflict resolution mechanism to prefer the 

new EBL rules whenever they apply. Since the rules are mutually exclusive and exhaustive, 

this implies that once control moves to rules-expert, a deterministic sequence of actions are 

taken by the agent that never fail. These steps yield a local expert for restricted EM that can 

fill the knowledge gap of rules-sam. The last step of the rule generation phase is to combine 

rules-expert with rules-sam to form the final rule set, which is called "rules-combo". 

The rules-sam that is used for generating execution traces in EM is a high-performing 

rule set learned by SAMUEL. Using rules-sam, SAMUEL wins (i.e., evades the adversary) 

992 out of 1000 episodes (99.2%). However, when rules-expert is added to rules-sam to form 

rules-combo, the success over 1000 episodes climbs to 100% on the original EM problem. 

Although the performance improvement from 99.2% to 100% gained by adding the new rules 

f EXGEN exhaustively generates all necessary combinations of agent and adversary speeds 
that satisfy this test. Future work will include modifying SAMUEL's rule language to directly 
express this test. 



to rules-sam would be insignificant for many applications, there are some applications for 

which this would be very meaningful. One example is the life-threatening situation of a 

human pilot using this plan to evade a missile that is tracking his plane. Furthermore, because 

they are based on generalized explanations, the new rules are more general than those in 

rules-sam and are therefore potentially applicable under more varied conditions. 

5. Summary and Future Work 

The goal of this research has been to improve the acceptability of reactive plans for 

human use. Two steps are taken toward this end, as described here: (1) human comprehensi- 

bility is improved, and (2) reliability and generality are increased. Using the approach that 

we present, it is possible to increase the comprehensibility and accuracy of reactive plans. 

Although comprehensibility is greatly improved by this method, the accuracy improves 

by only a small margin for the EM problem. This is due to the fact that the original plan 

developed by SAMUEL is already highly effective. In the future, we would like to apply this 

method to other problems on which SAMUEL is less effective to see if a greater performance 

improvement can be achieved. A local expert for more complex domains might be less 

effective than the one we have developed for restricted EM. For example, it might not com- 

plete all of the knowledge gaps of the planner. Nevertheless, even if we cannot achieve a 

final success rate of 100%, we would like to strive for a large performance improvement on 

these domains. 

When applying EXGEN to other domains, we would also like to evaluate its generality. 

All of EXGEN's learning methods, other than the separation of EM into stages, seem to be 

applicable to many other domains. However, the separation of EM into stages might be 

overly simplistic for other problems. Future work will focus primarily on developing and 

implementing a more generally applicable method for handling rule integration. 
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